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Abstract: We construct the partition function of 1/8 BPS dyons in type II string theory

on T 6 from counting of microstates of a D1-D5 system in Taub-NUT space. Our analysis

extends the earlier ones by Shih, Strominger and Yin and by Pioline by taking into account

the walls of marginal stability on which a 1/8 BPS dyon can decay into a pair of half-BPS

dyons. Across these walls the dyon spectrum changes discontinuously, and as a result

the spectrum is not manifestly invariant under S-duality transformation of the charges.

However the partition function is manifestly S-duality invariant and takes the same form

in all domains of the moduli space separated by walls of marginal stability, — the spectra

in different domains being obtained by choosing different integration contours along which

we carry out the Fourier transform of the partition function. The jump in the spectrum

across a wall of marginal stability, calculated from the behaviour of the partition function

at an appropriate pole, reproduces the expected wall crossing formula.
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1. Introduction, conventions and summary

Since the original proposal of Dijkgraaf, Verlinde and Verlinde [1] for quarter BPS dyon

spectrum in heterotic string theory compactified on T 6, there has been extensive study of

dyon spectrum in a variety of N = 4 supersymmetric string theories [2 – 20]. Typically in

these theories the dyon spectrum jumps discontinuously across walls of marginal stability

in the moduli space on which a quarter BPS dyon can decay into a pair of half-BPS dyons.

One of the important results which has emerged out of the recent studies is that the dyon

partition function does not change across these walls of marginal stability. Instead in

order to extract the degeneracy — or more appropriately an index — in different domains

bounded by walls of marginal stability, the partition function needs to be integrated along

different contours. As a result the jump in the index across a wall of marginal stability

may be determined by evaluating the residue of the integrand at the pole that the contour

crosses as we deform it from its initial position to the final position [13, 14, 16, 17, 19, 20].

Given this result in N = 4 supersymmetric string theories it is natural to explore

if this generalizes to other string theories with different amounts of supersymmetry. In

this paper we shall extend the analysis to the 1/8 BPS dyon partition function of N = 8

supersymmetric string theory obtained by compactifying type IIB string theory on a six

dimensional torus. The dyon spectrum in this theory has been analyzed before in [21, 22, 5]

using 4D-5D lift [23] and earlier results of [24] for the partition function of D1-D5 system in

type IIB string theory compactified on T 5. In our analysis we include a larger set of dyons

charges — including those corresponding to configurations with no D1-branes — in the

definition of the partition function. This new partition function turns out to have properties

similar to those of N = 4 supersymmetric string theories, ı.e. the same partition function,

integrated along different contours, gives us the index of 1/8 BPS dyons in different domains

in the moduli space separated by walls of marginal stability. Furthermore, the partition

function has manifest S-duality invariance. We also verify explicitly that the jump in the

index across a wall of marginal stability, computed from the behaviour of the partition

function near an appropriate pole, reproduces the expected wall crosing formula [25 – 33].
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We shall now give a brief summary of our analysis and the results. The analysis

proceeds exactly parallel to that for N = 4 supersymmetric string theories described in [9 –

11, 18]. We consider type IIB string theory compactified on a six dimensional torus denoted

as T 4×S1× S̃1 and consider in this theory a 1/8 BPS configuration consisting of a Kaluza-

Klein (KK) monopole — or equivalently a Taub-NUT space — associated with the S̃1

circle, a D5-brane wrapped on T 4 × S1 and Q1 D1-branes wrapped along S1, carrying −n

units of momentum along S1 and J units of momentum along S̃1. We shall call this the

first description. There is a second description, obtained from the above configuration by

applying an SL(2, Z) duality of the ten dimensional type IIB string theory, followed by an

R → 1/R duality on the circle S̃1 that takes it to a dual circle Ŝ1 and finally making a

six dimensional string-string duality transformation that dualizes the NS-NS 2-form field.

Using the sign conventions reviewed in [18] we find that this maps the original configuration

to a KK monopole associated with the circle Ŝ1, −Q1 NS 5-branes wrapped on T 4×S1, −J

NS 5-branes wrapped on T 4×Ŝ1 and a fundamental type II string wrapped on S1, carrying

−n units of momentum along S1. In the second description, we denote by Q and P the 12

dimensional electric and magnetic charge vectors in the convention where the elementary

strings carry electric charges and the solitons carry magnetic charges. We also denote by

L the SO(6, 6) continuous T-duality invariant metric of signature (6,6) and define

Q2 = QT LQ, P 2 = P T LP, Q · P = QT LP . (1.1)

Then for the configuration described above we have [18]

Q2 = 2n, P 2 = 2Q1, Q · P = J . (1.2)

In order to develop our analysis in close analogy to that in N = 4 supersymmetric string

theories we shall restrict our attention to charge vectors of the type described above,

or those which can be obtained from them by T-duality and electric-magnetic S-duality

transformation in the second description of the theory. This allows us to have charges

associated with momentum and fundamental string winding numbers along the six circles,

and also Kaluza-Klein monopole and H-monopole charges associated with these circles,

but does not allow us to have D-brane charges. We shall also restrict the moduli of the

theory to lie in a subspace where no RR sector fields in the second description are switched

on. This corresponds to requiring the states and the moduli to be invariant under (−1)FL

(or (−1)FR), and is a consistent set of restrictions. In this restricted subspace the duality

group is a product of the discrete T-duality group SO(6, 6; Z) and the discrete S-duality

group SL(2, Z). Since we shall be computing an index which does not change continuously

under variation of the moduli, we expect our results to be valid at least within an open

neighbourhood of this restricted subspace in the full moduli space.1

1Due to the restriction on the charges our formula for the index is not manifestly invariant under the

U-duality group E7(7)(Z). However we expect that it can be regarded as the special case of a more general

formula which is manifestly U-duality invariant. As we shall see later, for Q2P 2 − (Q · P )2 < 0 there is

an additional complication due to the existence of walls of marginal stability, — in this case the index not

only depends on the charges but also on the domain of the moduli space where we compute the index.
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A 1/8 BPS state of the theory carrying the charges (Q,P ) given above breaks 28

of the 32 supersymmetry generators of the theory. As a result it is accompanied by 28

real fermion zero modes and quantization of these fermion zero modes gives a 214-fold

degenerate state. A generic 1/8 BPS state is obtained by taking a tensor product of

this basic supermultiplet with a supersymmetry singlet state. We shall call such a state

bosonic or fermionic depending on whether this supersymmetry singlet state is bosonic or

fermionic, and denote by d(Q,P ) the number of bosonic supermultiplets minus the number

of fermionic supermultiplets carrying charges (Q,P ). This number can be calculated from

the helicity supertrace [34, 35]

B14 =
1

14!
TrQ,P (−1)F (2h)14 , (1.3)

where h denotes the helicity of a state, F denotes the fermion number and TrQ,P denotes

trace over all states of charge (Q,P ). The need for the (2h)14 factor may be understood

as follows. For every pair of fermion zero modes we have a 2-fold degeneracy with the two

states carrying opposite fermion number and differing in helicity by 1/2. Thus Tr(−1)F

vanishes for this pair of states and we need to insert a factor of 2h into the trace to get a

non-zero answer. Since there are altogether 28 fermion zero modes, we need to insert 14

factors of 2h to ‘soak up’ all the fermion zero modes and give a non-vanishing answer. This

explains the need for the (2h)14 factor. Since all the factors of 2h are soaked up by the

fermion zero modes associated with the broken supersymmetry generators, (1.3) effectively

evaluates Tr(−1)F on the supersymmetry singlet states with which we tensor the basic 1/8

BPS supermultiplet. The 1/14! factor accounts for the fact that the 14 factors of 2h may

be distributed among the traces over the 14 pairs of fermion zero modes in 14! different

ways.

For the dyon configurations described earlier, d(Q,P ) may be regarded as a function

f(n,Q1, J) of n = Q2/2, Q1 = P 2/2 and J = Q · P . It now follows from the analysis

of [36, 37] that the index B14 of any other 1/8 BPS dyon in the restricted subspace,

carrying charges (Q,P ), is given by f(Q2/2, P 2/2, Q · P ) as long as gcd(Q ∧ P ) = 1. We

define the partition function for these dyons to be

Ψ(ρ̌, σ̌, v̌) =
∑

n,Q1,J

(−1)J+1 f(n,Q1, J) e2πi(nσ̌+Q1ρ̌+Jv̌)

=
∑

Q2,P 2,Q·P

(−1)Q·P+1 f(Q2/2, P 2/2, Q · P ) eiπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) . (1.4)

Conversely, we may write

d(Q,P ) = (−1)Q·P+1

∫ iM1+1/2

iM1−1/2
dρ̌

∫ iM2+1/2

iM2−1/2
dσ̌

∫ iM3+1/2

iM3−1/2
dv̌e−iπ(σ̌Q2+ρ̌P 2+2v̌Q·P )Ψ(ρ̌, σ̌, v̌) ,

(1.5)

where M1, M2 and M3, describing the imaginary parts of ρ̌, σ̌ and v̌, need to be fixed to

values where the sum in (1.4) is convergent.

There is one subtle issue that needs to be mentioned here. The full N = 8 super-

symmetry transformations acting on the fields in the restricted subspace of the second

– 3 –
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description, where we set the RR sector moduli and the D-brane charges to zero, will take

us out of this subspace. However there are two different N = 4 subalgebras which preserve

this subspace, — one acting on the right-moving world-sheet fields and the other acting

on the left-moving world-sheet fields. We shall call these right-handed and the left-handed

supersymmetry algebras, — these commute with (−1)FL and (−1)FR symmetries respec-

tively. A 1/8 BPS state of the full theory without any RR charge, having four unbroken

supersymmetries, must correspond to a quarter BPS state of one of these two N = 4

supersymmetry algebras. For definiteness we shall focus on those states which preserve

quarter of the supersymmetries of the right-handed supersymmetry algebra. In particular

in defining the partition function we shall sum over only states of this type, and not the

ones which preserve quarter of the supersymmetries of the left-handed supersymmetry al-

gebra. This corresponds to summing over states with Q1, n ≥ 0. We shall see however that

the same partition function, expanded in a different way, also captures information about

quarter BPS states of the left-handed supersymmetry algebra.

We compute the partition function Ψ by counting microstates carrying charge quantum

numbers (Q,P ) in the weakly coupled type II string theory in the first description. Our

result for Ψ is

Ψ(ρ̌, σ̌, v̌) =
∑

k≥0

∑

l≥0

∑

j∈zz
j>0 for k=l=0

(
1 − e2πi(lσ̌+kρ̌+jv̌)

)−2
e2πi(lσ̌+kρ̌+jv̌) ĉ(4kl − j2) , (1.6)

where ĉ(u) is defined through the relations [24, 21]

− ϑ1(z|τ)2 η(τ)−6 ≡
∑

k,l

ĉ(4k − l2) e2πi(kτ+lz) . (1.7)

ϑ1(z|τ) and η(τ) are respectively the odd Jacobi theta function and the Dedekind eta

function. The k ≥ 1 terms in the sum in (1.6) are identical to the partition function of

the D1-D5 system in type IIB string theory compactified on T 4 × S1 [24]. As we shall

explain, the k = 0 term comes from the dynamics of a single D5-brane moving in the KK

monopole background and is essential for S-duality invariance of the partition function

and consistency with the wall crossing formula. In this context we also note that in the

k = l = 0 term if we had put the restriction j < 0 instead of j > 0 we would have gotten

the same analytic function.

The partition function (1.6) itself does not give the index d(Q,P ) unambiguously; we

must specify the values of M1, M2 and M3 appearing in (1.5) or equivalently describe how

we should Fourier expand Ψ to extract the index. It turns out that in the weakly coupled

type IIB string theory in the first description where we have carried out the computation,

we need to first expand Ψ in powers of e2πiρ̌ and e2πiσ̌ and then expand the coefficient of

each term in powers of e2πiv̌ or e−2πiv̌. This unambiguously determines the contribution

from the (k, l) 6= (0, 0) terms, — for any given power of e2πiρ̌ and e2πiσ̌ the power of e2πiv̌

is bounded both from above and below and the Fourier expansion in e2πiv̌ is unambiguous.

However for the k = l = 0 term the summand can be expanded either as a power series

expansion in e2πiv̌ or as a power series expansion in e−2πiv̌, with infinite number of terms in
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each case. The correct choice depends on whether the angle θ between S1 and S̃1 is larger

than 90◦ or less than 90◦. In other words, the actual value of the index changes as we

cross the θ = 90◦ line. This is entirely analogous to the corresponding result found in [9]

and reviewed in detail in [18] for N = 4 supersymmeric string theories. Equivalently, while

determining d(Q,P ) via eq. (1.5), the quantities M1, M2 and M3 which fix the integration

contour need to be chosen in the range

M1,M2 ≫ |M3| ≫ 0 , (1.8)

with the sign of M3 determined by the angle between S1 and S̃1. If we try to deform the

contour for M3 > 0 to the one for M3 < 0 we pick up the residue at the pole of Ψ(ρ̌, σ̌, v̌)

at v̌ = 0, and as a result the index changes by an amount determined from the residue at

the pole. This correctly accounts for the change in the index across the θ = 90◦ line.

Our analysis determines the form of the partition function in a specific domain — more

precisely two domains separated by the θ = 90◦ line — of the moduli space corresponding

to weak string coupling in the first description of the theory. A priori the index d(Q,P )

and the partition function Ψ could have different forms in other domains in the moduli

space separated by walls of marginal stability. However as in the case of all known examples

in N = 4 supersymmetric string theories, we find that the partition function of the N = 8

supersymmetric string theory is also described by the same analytic function in all domains

of the moduli space. The choice of the integration contour, encoded in the choice of M1, M2

and M3, differs in different domains separated by the walls of marginal stability. The proof

of this follows the same logic as in the case of N = 4 supersymmetric string theories [13, 18].

First of all we note that S-duality transformations take us from one domain bounded by

walls of marginal stability to another such domain [13, 14]. In particular if the original

domain is bounded by walls of marginal stability on which the dyon of charge (Q,P ) decays

into dyons of charge (αiQ + βiP, γiQ + δiP ) and ((1−αi)Q− βiP,−γiQ + (1− δi)P ), then

S-duality transformation of the charges and the moduli by the SL(2, Z) matrix

(
a b

c d

)

maps it into a new domain in which

(
αi βi

γi δi

)
is replaced by [13, 37]

(
α′

i β′
i

γ′
i δ′i

)
=

(
a b

c d

) (
αi βi

γi δi

)(
a b

c d

)−1

. (1.9)

Thus we can find the index for the dyons in other domains by an S-duality transformation

of our original formula. On the other hand explicit S-duality transformation of (1.5) by the

SL(2, Z) matrix

(
a b

c d

)
leads to a new formula for the index where we replace in (1.5)

Ψ(ρ̌, σ̌, v̌) and (M1,M2,M3) by [13, 19]

Ψ(d2ρ̌ + b2σ̌ + 2bdv̌, c2ρ̌ + a2σ̌ + 2acv̌, cdρ̌ + abσ̌ + (ad + bc)v̌) (1.10)

and

(a2M1 + b2M2 − 2abM3, c
2M1 + d2M2 − 2cdM3,−acM1 − bdM2 + (ad + bc)M3) (1.11)

– 5 –
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respectively. Thus if we can show that the partition function Ψ is manifestly invariant

under the S-duality transformation:

Ψ(ρ̌, σ̌, v̌) = Ψ(d2ρ̌ + b2σ̌ + 2bdv̌, c2ρ̌ + a2σ̌ + 2acv̌, cdρ̌ + abσ̌ + (ad + bc)v̌),(
a b

c d

)
∈ SL(2, Z) , (1.12)

then the result for the index in different domains in the moduli space will be given just by

changing the integration contour according to (1.11). We prove (1.12) explicitly in § 3.

In order to use (1.11) to find the integration contour in different domains in the moduli

space we need information about the choice of contour in at least one such domain. This

can be gotten from the results of weak coupling calculation in the first description. In

particular if we consider the domain bounded by the walls corresponding to the decays

(Q,P ) → (Q, 0) + (0, P ), (Q,P ) → (Q,Q) + (0, P − Q) and (Q,P ) → (Q − P, 0) + (P,P ),

then we need to choose the Mi’s as M1,M2 ≫ −M3 ≫ 0 [13, 18].2 An explicit prescription

for (M1,M2,M3) at different points in the moduli space satisfying (1.11) can be found

in [17, 19].

The S-duality invariance of Ψ allows us to calculate the jump in the index across a

wall of marginal stability by calculating the residue at the pole(s) the contour crosses as

we deform it from the initial position to the final position calculated according to (1.11). It

follows from the corresponding analysis in N = 4 supersymmetric string theories [13, 19, 20]

that as we cross a wall of marginal stability associated with the decay into a pair of half-BPS

states3

(Q,P ) → (Q1, P1) + (Q2, P2) , (1.13)

(Q1, P1) = (αQ + βP, γQ + δP ), (Q2, P2) = (δQ − βP,−γQ + αP ) , (1.14)

αδ = βγ, α + δ = 1, α, β, γ, δ ∈ Z , (1.15)

the contour crosses the pole at

ρ̌γ − σ̌β + v̌(α − δ) = 0 . (1.16)

2Although we are using these decays to label different domains in the moduli space, we shall see in § 4

that the actual jump in the index across many of these walls vanishes in the N = 8 supersymmetric string

theory.
3It follows from the analysis of [13, 38 – 40] that in the restricted subspace of the moduli space we are

considering, such decays occur on codimension 1 subspaces. This is a necessary (but not sufficient) condition

for an index to jump across this subspace, since for higher codimension subspaces we can avoid the change

in the index by going around the subspace. We shall see later that for a subset of the decays of the type

described in (1.13)–(1.15) for which (αQ + βP ) and (δQ − βP ) are null and as a result the final decay

products are half-BPS under the full N = 8 supersymmetry algebra and not just the N = 4 subalgebra

that we are considering here, the index B14 jumps discontinuously. Thus we expect that such decays will

continue to occur on a codimension one subspace of the full moduli space even after turning on the RR

sector moduli. For the other decays of the type described in (1.13)–(1.15) for which either (αQ + βP ) or

(δQ − βP ) fails to be null, the change in B14 vanishes. Thus the associated subspace may or may not

remain codimension one in the full moduli space. Finally, if we consider decays which fail to satisfy (1.14)

and/or (1.15), then it follows from the analysis of [13, 38 – 40] that such decays occur on subspaces of

codimension > 1 in the restricted subspace of the moduli space we are considering and hence also in the

full moduli space. The change in B14 associated with such decays always vanishes.

– 6 –
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Thus the jump in the index across a wall of marginal stability is given by the residue of

the integrand in (1.5) at the pole at (1.16). We check in § 4 that the jump in the index

predicted by this formula at the wall associated with the decay (Q,P ) → (Q, 0) + (0, P )

reproduces the expected change in the index across a wall of marginal stability [25 – 33].

Similar agreement at the other walls of marginal stability then follows from S-duality

invariance of Ψ.

Refs. [21, 22] proposed formulæ similar to the one given in (1.6) for the 1/8 BPS dyon

spectrum in type IIB string theory on T 6. However both these proposals treated the dyon

spectrum as universal independent of the region of the moduli space where we calculate the

spectrum. Thus in any given region in the moduli space these proposals differ from ours in

a subtle way. As we shall see below eq. (4.1), the index jumps discontinuously across a wall

of marginal stability only for states with Q2P 2 − (Q · P )2 < 0. Thus the subtle difference

between our results and those proposed in [21, 22] arises only for such states.

Since for positive Q2P 2 − (Q · P )2 we do not have any associated wall of marginal

stability, the index calculated from (1.5), (1.6) is independent of the choice of (M1,M2,M3)

and the formula for the index d(Q,P ) takes the form [24, 22]

d(Q,P ) =
∑

s|Q2/2,P 2/2,Q·P ;s>0

s ĉ

(
Q2P 2 − (Q · P )2

s2

)
. (1.17)

This formula is manifestly S-duality invariant since Q2P 2−(Q·P )2 and gcd(Q2/2, P 2/2, Q·

P ) are S-duality invariants.

The partition function (1.6) has been derived for the 1/8 BPS states whose unbroken

supersymmetries lie in the right-handed N = 4 supersymmetry algebra. The index for 1/8

BPS states whose unbroken supersymmetries lie in the left-handed N = 4 supersymmetry

algebra can be obtained from the former by world-sheet parity transformation exchanging

these two supersymmetry algebras. This effectively replaces the O(6, 6) invariant metric L

by −L in all formulæ. In particular this changes (Q2, P 2, Q·P ) to (−Q2,−P 2,−Q·P ). Thus

the new partition function is related to the previous one by the transformation (ρ̌, σ̌, v̌) →

(−ρ̌,−σ̌,−v̌). This however produces the same analytic function Ψ(ρ̌, σ̌, v̌) since each term

in the sum in (1.6) is invariant under the transformation (ρ̌, σ̌, v̌) → (−ρ̌,−σ̌,−v̌). Thus

the same partition function Ψ(ρ̌, σ̌, v̌) contains information about both types of 1/8 BPS

states, but the choice of (M1,M2,M3) in (1.5) for these two types of dyons are related by the

transformation (M1,M2,M3) → (−M1,−M2,−M3), accompnied by L → −L replacement

in the expression for Mi’s in terms of the moduli given in [17, 19]. Also for a given charge

vector (Q,P ), the physical location of the walls of marginal stability in the moduli space,

computed in [13], will differ for the two algebras due to the L → −L replacement in the

associated formulæ.

Finally we note that some of the N = 2 supersymmetric models discussed in [41] have

properties close to that of N = 4 supersymmetric string theories. It will be interesting

to explore if the phenomenon of having a universal partition function independent of the

domains in the moduli space holds for these theories as well.

– 7 –
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2. Microstate counting

In this section we shall describe how we arrive at the formula (1.6) for the dyon partition

function. We shall carry out our analysis in the weak coupling limit of the first description of

the theory, regarding it as a collection of KK monopole – D1-D5 system carrying momenta

along the circles S1 and S̃1. As in [9], in this limit we can regard the degrees of freedom

of the KK monopole, the D1-D5 center of mass motion and the D1-D5 relative motion as

three non-interacting systems and calculate the partition function of the combined system

by taking the product of the three partition functions.

Since we are computing the partition function of 1/8 BPS states, special care must be

taken to ensure that all the fermion zero modes associated with the 28 broken supersym-

metry generators are soaked up. As described in § 1, each pair of fermion zero modes are

soaked up by an insertion of (−1)F 2h factor in the helicity trace. Let us examine how the

fermion zero modes get distributed between the three subsystems described above. First of

all the KK monopole associated with S̃1 breaks 16 of the 32 supersymmetries of the original

theory. Thus the world-volume theory on the KK monopole has 16 fermion zero modes

which must be soaked up by a factor of (−1)F (2h)8 inserted into the partition function.

The classical D5-brane in the KK monopole background breaks 8 of the remaining 16 su-

persymmetries and hence its world-volume carries 8 fermion zero modes. We need a factor

of (−1)F (2h)4 inserted into the partition function of the D5-brane to soak up these zero

modes. Finally it is known from the analysis of [24] that the system describing the dynam-

ics of the D1-branes inside the D5-brane has four fermion zero modes and hence requires

a factor of (−1)F (2h)2 inserted into the partition function to soak up these zero modes.

This determines how the 14 factors of (2h) are distributed among different components of

the partition function.

The above analysis also shows that in order to get a non-vanishing result for the index

we must keep both the KK monopole and the D5-brane in their ground state. In particular

we cannot excite any mode carrying momentum along S1. If we did, then such a system

will break more supersymmetries and we shall need additional factors of (2h) to be inserted

into the partition function in order to get a non-vanishing result. Since the total power

of 2h is fixed to be 14, this would require removing some factors of 2h from some other

component of the partition function, making the corresponding contribution vanish.4 Thus

the non-trivial contribution to the partition function comes solely from the relative motion

of the D1-D5 system. This was evaluated in [24], yielding the answer5

∑

k≥1

∑

l≥0

∑

j∈zz

(
1 − e2πi(lσ̌+kρ̌+jv̌)

)−2
e2πi(lσ̌+kρ̌+jv̌) ĉ(4kl − j2) , (2.1)

where ĉ(u) has been defined in eq. (1.7). This can be identified with the contribution

to (1.6) from the k ≥ 1 terms.

4This should be contrasted with the corresponding analysis in N = 4 supersymmetric string theories

where the KK monopole and the D5-brane can have excitations carrying left-moving momentum along S1

without breaking any additional supersymmetry.
5The (−1)Q·P factor in eqs. (1.4), (1.5) relating the index to the partition function has the same origin

as in the case of N = 4 supersymmetric string theories [5, 17, 18] and will not be discussed here.
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In arriving at (2.1) we have implicitly assumed that leaving aside the degeneracy

implied by the 8 broken supersymmetry generators, there is a unique supersymmetric state

describing the D5-brane bound to the KK monopole. Is this true? A D5-brane in flat space

has altogether 16 fermion fields on its world-volume. As pointed out before, classically a

D5-brane in the background of the KK monopole has eight unbroken supersymmetries

and breaks eight supersymmetries. Thus the world-volume theory of the D5-brane should

contain eight free goldstino fermions. These, together with the four scalar fields associated

with the Wilson lines along T 4 describe a free (4,4) supersymmetric field theory in 1+1

dimensions spanning the time coordinate and the coordinate along S1. The rest of the

eight fermion fields on the D5-brane world-volume combine with the four scalar fields

describing motion along the Taub-NUT space to give an interacting (4,4) supersymmetric

sigma model with Taub-NUT target space. By the standard argument the number of

supersymmetric ground states of this system is equal to the number of harmonic forms

on the Taub-NUT space which is 1 [42, 43]. Since the harmonic form is normalizable the

state describes a bound state [44, 45]. This confirms our implicit assumption that leaving

aside the degeneracy implied by the 8 broken supersymmetry generators, there is a unique

supersymmetric state describing the D5-brane bound to the KK monopole.

The above analysis holds when the S1 and S̃1 circles are orthogonal. When we switch

on a modulus that changes the angle between S1 and S̃1 there is an attractive force between

the D5-brane and the KK monopole, giving rise to additional potential terms [9]. Since

in the limit in which the size of the Taub-NUT space is large this potential term as well

as the Taub-NUT metric affects mainly the modes independent of the S1 coordinate, we

can treat the non-zero mode oscillators carrying momentum along S1 as free and focus

our attention on the supersymmetric quantum mechanics describing the zero modes. The

latter is obtained via dimensional reduction of the 1+1 dimensional field theory to 0+1

dimensions. This system was analyzed in [46 – 48] in the context of quarter BPS dyon

spectrum in the N = 4 supersymmetric gauge theories and the result may be summarized

as follows. Besides the fully supersymmetric ground state described above the system has

a set of states where 4 of the eight remaining supersymmetries are broken. Depending

on the angle between S1 and S̃1 these partially supersymmetric states have either only

positive or only negative momentum along S̃1, and there are precisely |j| states carrying

S̃1 momentum j.6 Thus the partition function for these dyons can be written as

∞∑

j=1

je±2πiv̌j = e2πiv/(1 − e2πiv)2 . (2.2)

Note that the result for the partition function is independent of whether we use positive

or negative momentum along S̃1.

The partially supersymmetric states described above are not relevant for the compu-

tation at hand since due to the four additional broken supersymmetries we need to insert a

6We are counting only those states which, from the space-time viewpoint, preserve quarter of the super-

symmetries of the right-handed N = 4 supersymmetry algebra. There are also states preserving quarter of

the supersymmetries of the left-handed supersymmetry algebra; for these states the sign of eS1 momentum

is opposite.
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factor of (−1)F (2h)2 into the partition function. This effectively uses up all the factors of

(2h) in order to saturate the fermion zero modes of the KK monopole - D5-brane system,

and there is no left over factors of 2h which we can insert into the partition function of the

D1-D5 system. As a result the contribution from such terms vanish.

We must note however that in computing the full partition function we must also

include states with Q1 = 0, ı.e. no D1-branes if there are 1/8 BPS states in this sector.

Proceeding as before we can see that the KK monopole soaks up a factor of (2h)8 and the

8 broken supersymmetries associated with the classical D5-brane soak up another factor of

(2h)4. Thus we are left with a factor of (2h)2. However unlike in the Q1 6= 0 case where

these factors needed to be inserted in the D1-D5 partition function to get a non-vanishing

contribution, here we are free to use them to either get additional excitations on the D5-

brane from the left-moving modes7 of the D5-brane world-volume theory carrying negative

momenta along S1, keeping the zero-mode part of the theory in the fully supersymmetric

ground state, or keeping the non-zero modes in their ground state and using one of the

partially supersymmetric bound states of the zero-mode part of the D5-brane world-volume

theory. The contribution from the first set of states can be computed by recalling from [24]

that the left-moving fields on the D5-brane world-volume have the following (j, 2h) assign-

ment: four scalars with (j, 2h) = (0, 0) representing the Wilson lines along T 4, one scalar

each for (j, 2h) = (1, 1), (1,−1), (−1, 1) and (−1,−1) representing the coordinates along

the Taub-NUT space, and 2 fermions each for (j, 2h) = (1, 0), (−1, 0), (0, 1) and (0,−1).

Following [24] this yields the answer

1

2

d2

dỹ2

∞∏

l=1

[
(1 − ql)−4

{ ∏

j=±1

∏

ej=±1

(1 − qlyj ỹ
ej)−1

}
×

×

{ ∏

j=±1

(1 − qlyj)2
}{ ∏

ej=±1

(1 − qlỹ
ej)2

}]∣∣∣∣
ey=1

, q≡e2πiσ̌, y≡e2πiv̌ . (2.3)

Explicit evaluation of this term leads to

∞∑

l=1

[
− 2

(
1 − e2πilσ̌

)−2
e2πilσ̌ +

∑

j=±1

(
1 − e2πi(lσ̌+jv̌)

)−2
e2πi(lσ̌+jv̌)

]
. (2.4)

Using the fact that ĉ(u) = 0 for u < −1 and ĉ(0) = −2, ĉ(−1) = 1, (2.4) can be identified

with the k = 0, l ≥ 1 terms in the sum in (1.6).

Finally we turn to the contribution to the partition function from the partially super-

symmetric bound states of the D5-brane to the KK monopole. To evaluate this contribution

we note that since the extra factor of (2h)2 is now absorbed by the supersymmetric quan-

tum mechanics describing the D5-brane motion in the KK monopole background, we need

to evaluate the trace over the non-zero mode oscillators without any factor of 2h. The

corresponding contribution is given by (2.3) without the 1
2∂2

ey operation. At ỹ = 1 this

7Exciting the right-moving modes will break the right-handed N = 4 supersymmetry algebra but pre-

serve the left-handed N = 4 supersymmetry algebra. As mentioned in § 1, we shall not include such states

in the definition of the partition function even though they describe 1/8 BPS dyons.
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reduces to 1, indicating that we cannot excite any of the oscillators carrying momentum

along S1. Thus the contribution to the partition function from this set of states is given

by (2.2). This can be identified as the k = 0, l = 0 term in (1.6).

The sum of the expressions given in (2.1), (2.4) and (2.2) gives the complete contribu-

tion to the partition function stated in (1.6).

3. S-duality invariance of the partition function

In this section we shall give a proof of S-duality invariance of the partition function encoded

in (1.12). This requirement may be expressed as

Ψ(ρ̌, σ̌, v̌) = Ψ(ρ̌′, σ̌′, v̌′) , (3.1)

where

ρ̌′ = d2ρ̌ + b2σ̌ + 2bdv̌,

σ̌′ = c2ρ̌ + a2σ̌ + 2acv̌,

v̌′ = cdρ̌ + abσ̌ + (ad + bc)v̌,

(
a b

c d

)
∈ SL(2, Z) . (3.2)

The proof of (3.1) goes as follows. We first note that

kρ̌ + lσ̌ + jv̌ = k′ρ̌′ + l′σ̌′ + j′v̌′ , (3.3)

where

k′ = a2k + c2l − acj, l′ = b2k + d2l − bdj, j′ = −2abk − 2cdl + (ad + bc)j . (3.4)

Furthermore we have

4k′l′ − j′2 = 4kl − j2 . (3.5)

Using these relations in (1.6) we get

Ψ(ρ̌, σ̌, v̌) =
∑

k≥0

∑

l≥0

∑

j∈zz
j>0 for k=l=0

(
1 − e2πi(l′σ̌′+k′ρ̌′+j′v̌′)

)−2
e2πi(l′σ̌′+k′ρ̌′+j′v̌′) ĉ(4k′l′ − j′2) .

(3.6)

If we can now show that k′, l′ and j′ take values over the same range as k, l and j,

then the right hand side of (3.6) can be identified as Ψ(ρ̌′, σ̌′, v̌′). This would prove the

desired relation (3.1). We shall prove this separately for the S-duality transformations

S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
. Since these two matrices generate the whole SL(2, Z)

group, once we have proven invariance of Ψ under S and T , it proves invariance of Ψ under

the full SL(2, Z) S-duality group.

First consider the transformation by S. In this case (3.4) takes the form

k′ = l, l′ = k, j′ = −j . (3.7)
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Thus k′ and l′ run over non-negative integers. Furthermore for (k′, l′) 6= (0, 0), j′ can take

arbitrary integer values, whereas for k′ = l′ = 0, j′ takes only negative integer values.

Using j′ → −j′ symmetry of the summand in (3.6) for k′ = l′ = 0 we can turn this into

sum over positive integer values of j′. Thus the range of (k′, l′, j′) coincides with the range

of summation over (k, l, j). This proves invariance of Ψ under the transformation S.

We now turn to the transformation T . In this case (3.4) gives

k′ = k, l′ = k + l − j, j′ = j − 2k . (3.8)

Using the j → −j invariance of the k = l = 0 term in (1.6) we shall take the sum over the

original variable j to run over negative integer values. We now see from (3.8) that k′ always

takes non-negative integer values. This agrees with the corresponding range of values of k.

To determine the range of values taken by l′ we shall consider two cases separately. First

consider the case k = l = 0. In this case l′ = −j. Since j < 0, we see that l′ takes positive

integer values. On the other hand for (k, l) 6= (0, 0) we have

(k + l)2 − j2 = (k − l)2 + 4kl − j2 ≥ −1 , (3.9)

where in the last step we have used the fact that j2 ≤ 4kl+1 for ĉ(4kl− j2) to be non-zero.

Furthermore the inequality (3.9) is saturated only if k = l and j2 = 4kl+1 = 4k2 +1. Since

j, k, l ∈ Z, the only solution to this is k = l = 0, j = ±1. This contradicts our assumption

that (k, l) 6= (0, 0). Thus we see that the bound cannot be saturated and we must have

(k + l)2 ≥ j2 . (3.10)

Since k, l are non-negative integers this gives k + l ≥ |j|. Thus l′ given in (3.8) is a

non-negative integer.

Next we shall examine the range of j′ for k′ = l′ = 0. From (3.8) we see that in this

case k = 0, j = l and j′ = j = l. Furthermore l cannot vanish, since for k = l = 0, j must

be a negative integer and hence we cannot have j = l. This shows that l and hence j′ = l

must be a positive integer. Thus the allowed range of values of k′, l′ and j′ takes the form

k′ ≥ 0, l′ ≥ 0, j′ ∈ Z, j′ > 0 for k′ = l′ = 0 . (3.11)

This coincides with the allowed range of values of k, l and j after flipping the sign of j for

k = l = 0. As argued before, the latter operation preserves the form of Ψ.

In order to complete the proof of invariance of Ψ under the transformation T we

must now verify that all the values in the range (3.11) are realized, ı.e. given any triplet

(k′, l′, j′) subject to the condition (3.11) we can find a triplet (k, l, j) satisfying (3.8) within

the allowed range. For this we need to invert (3.8) as

k = k′, l = k′ + l′ + j′, j = j′ + 2k′ , (3.12)

and repeat our arguments in the opposite direction. This is a straightforward exercise

and we find that for any triplet k′, l′ and j′ satisfying (3.11), k and l given in (3.12) are

non-negative integers, j is an integer, and for k = l = 0, j is a positive integer which
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can be turned into a negative integer using the j → −j symmetry of the summand. This

completes the proof of invariance of Ψ under the S-duality transformation T .

This establishes S-duality invariance of Ψ given in (1.12). Note that inclusion of the

k = 0 terms in (1.6), which count the contribution from 1/8 BPS dyons with vanishing

D1-brane charge, is essential for getting an S-duality invariant partition function. Without

this term the range of k′, l′ and j′ will not coincide with that of k, l and j.

4. Wall crossing

In this section we shall carry out an independent computation of the change in the index

of a 1/8 BPS dyon as we cross a wall of marginal stability at which the 1/8 BPS dyon

breaks up into a pair of half-BPS dyons, and compare the result with the result predicted

from (1.6).

Let us first compute the jump in the index predicted by (1.6). According to eqs. (1.13)–

(1.16), as we cross the wall of marginal stability associated with the decay (Q,P ) →

(Q, 0) + (0, P ), the contour will cross the pole at v̌ = 0. Such poles of Ψ come from the

k = l = 0 term in (1.6). Thus the change in the index as we cross this wall is given by the

residue of the integrand in (1.5) at the pole at v̌ = 0. This gives

∆d(Q,P ) = (−1)Q·P+1 Q · P ĉ(−1) δQ2,0 δP 2,0 = (−1)Q·P+1 Q · P δQ2,0 δP 2,0 . (4.1)

Using S-duality invariance we see that for a more general decay of the type given in (1.13)–

(1.15) we must have (αQ + βP )2 = 0 and (δQ − βP )2 = 0 for ∆d(Q,P ) to be non-zero.

Combining these with the constraints (1.15) we get

α =
1

2
−

Q · P

2
√

(Q · P )2 − Q2P 2
, β =

Q2

2
√

(Q · P )2 − Q2P 2
,

γ = −
P 2

2
√

(Q · P )2 − Q2P 2
, δ =

1

2
+

Q · P

2
√

(Q · P )2 − Q2P 2
. (4.2)

Since α, β, γ, δ must be integers, this gives strong constraints on Q2, P 2 and (Q · P )2. In

particular Q2P 2 − (Q ·P )2, known as the discriminant, must be negative. Furthermore for

a given (Q,P ) there is at most a single wall of marginal stability corresponding to α, β, γ,

δ given by (4.2). This is an enormous simplification compared to the corresponding results

in N = 4 supersymmetric string theories [13].

Note that (1.6) has a pole at kρ̌+lσ̌+jv̌ = 0 for every (k, l, j) in the range of summation

given in (1.6). Comparing this to (1.16) we see that the poles given in (1.16) arise from the

(k, l, j) = (γ,−β, α − δ) term in the sum in (1.6). The restrictions (1.15) on α, β, γ, δ then

pick out those (k, l, j) for which 4kl− j2 = −1. Can the poles associated with other values

of (k, l, j) cause further jumps in the index? To answer this question we note that given

that the original contour, appropriate to the weak coupling region of the first description,

has M1,M2 ≫ |M3| > 0, it satisfies

M1,M2 > 0, M1M2 > M2
3 . (4.3)
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Since the conditions (4.3) are invariant under the S-duality transformation (1.11), all the

contours corresponding to different domains of the moduli space satisfy (4.3). It is now

easy to see that while deforming a contour associated with one such (M1,M2,M3) to a

contour associated with another (M1,M2,M3) satisfying (4.3), we never hit the pole at

kρ̌ + lσ̌ + jv̌ = 0 unless 4kl− j2 < 0, — indeed for 4kl− j2 ≥ 0, ℑ(kρ̌ + lσ̌ + jv̌) is positive

on the initial and the final contours and hence can be made to remain positive during the

deformation. Since ĉ(u) = 0 for u < −1, this gives 4kl − j2 = −1 as the condition for

hitting the pole. All such poles are of the form given in (1.15).

For an independent computation of the jump in the index across the wall of marginal

stability associated with the decay (Q,P ) → (Q, 0) + (0, P ), we use the following argu-

ment [25 – 31, 33]. Let us recall first the corresponding computation in N = 2 supersym-

metric string theories where a half BPS state breaks 4 of the 8 supersymmetries and hence

has 4 fermion zero modes. Now consider a wall of marginal stability where a half BPS state

decays into a pair of half BPS states. On one side of the wall the decay products form

a bound state with large separation between the components. This bound state ceases to

exist on the other side of the wall causing a jump in the index. Thus the change in the

index can be computed by computing the index associated with such bound states. Al-

though naively the system has 8 fermion zero modes — 4 associated with each component

— four of these zero modes take part in the interaction which form the bound state. Thus

we are left with four fermion zero modes as is expected of a single half-BPS state of the

theory. The detailed analysis of the quantum mechanics leading to the formation of the

bound state yields a multiplicative factor of (−1)Q·P+1 Q · P to the index of these bound

states, thereby leading to the formula

∆d(Q,P ) = (−1)Q·P+1 Q · P dh(Q, 0) dh(0, P ) , (4.4)

for the jump in the index. Here dh(Q, 0) and dh(0, P ) denote the index of half-BPS states

carrying charges (Q, 0) and (0, P ) respectively and represent the contribution to the bound

state index due to the internal degeneracy of each component.

If we consider the decay of a quarter BPS dyon of N = 4 supersymmetric string

theory into a pair of half-BPS dyons, then the following argument due to Denef [33] may

be used to generalize the above result. A quarter BPS state in N = 4 supersymmetric

string theory breaks 12 of the 16 supersymmetries and hence has 12 fermion zero modes.

On the other hand the pair of half-BPS states each carry 8 fermion zero modes. Of the

16 fermion zero modes associated with the pair, 4 are used up in formation of the bound

state as before, leaving us with 12 fermion zero modes required to give rise to a quarter

BPS supermultiplet. As before supersymmetric quantum mechanics produces a degeneracy

factor of (−1)Q·P+1 Q · P and leads to (4.4) for the change in the index across a wall of

marginal stability. Note that if we had replaced one or both of the decay products by

a quarter BPS state then the resulting system would have too many fermion zero modes

and hence the index would vanish [33]. This shows that in N = 4 supersymmetric string

theories the change in the index occurs only across walls where a quarter BPS dyon decays

into a pair of half BPS dyons.
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Let us now apply the same line of argument to the decay of a 1/8 BPS state in N = 8

supersymmetric string theories. As pointed out before, such a dyon is accompanied by 28

fermion zero modes. On the other hand a pair of half-BPS states in this theory carries a

total of 32 fermion zero modes of which 4 are used up for bound state formation. Thus we

are again left with the correct number of fermion zero modes and the quantum mechanics

of bound states leads to the degeneracy factor of (4.4). We now note that for the class

of charge vectors we are considering, — which in the second description involve charges

carried by elementary string states and solitons without any D-branes charges, — the only

half BPS states are those associated with elementary string states carrying charge (Q, 0)

with Q2 = 0 (ı.e. no left- or right-moving world-sheet excitation) and their S-duals carrying

charges (aQ, cQ) with Q2 = 0, gcd(a, c) = 1. Examination of the spectrum of elementary

string states shows that there is a unique half BPS supermultiplet associated with the

charge (Q, 0) and hence also with the charges (aQ, cQ). Thus we have dh(aQ, cQ) = δQ2,0,

and in particular

dh(Q, 0) = δQ2,0, dh(0, P ) = δP 2,0 . (4.5)

Substituting this into (4.4) we get a result in clear agreement with (4.1).
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